

The Strategic Local Government Asset Assessment Project

Webinar 6 Vehicles and Route Assessment

Webinar Topics

SESSION	ΤΟΡΙΟ
1	About the Strategic Local Government Asset Assessment Project
2	Basic Vehicle/ Bridge Interactions
3	Asset Assessment Framework
4	Tier 1 Assessments
5	Interpreting Engineering Reports for Access Decision Making
6	Vehicles and Route Assessment
7	Applying Conditions for Heavy Vehicle Access
8	NHVR Portal – Digital Asset Management
9	Pre-approvals for key routes

Webinar Presenters

Todd Wellard Project Manager Strategic Local Government Asset Assessment Project National Heavy Vehicle Regulator <u>Todd.Wellard@nhvr.gov.au</u>

William Beaumont Senior Access Facilitator Operations - Processes and Transactions National Heavy Vehicle Regulator William.Beaumont@nhvr.gov.au

Contents

11:00 - 11:05	Welcome	Todd Wellard
11:05 - 11:25	NHVR Portal – routing functionality	Will Beaumont
11:25 – 11:55	NHVR Portal – future functionality	Todd Wellard
11:55 - 12:00	QNA	All

Session format

- QnA (end and in chat)
- Please mute microphones
- Session recorded and will be emailed with slides
- Please watch in order as designed to build on knowledge

Learning outcomes

- NHVR Portal routing functionality
 - NHVR Portal and Guidelines for granting access
 - SCENARIO for suggesting an Alternate Route
- NHVR Portal future functionality
 - DAM = Digital Asset Management
 - Online products in development Rapid Assessment Tool and Way2Go

NHVR Portal – routing functionality

William Beaumont

Guiding Principles for Access Decisions

Issue notices rather than permits

Minimise the number of notices

Promote vehicles offering higher productivity

Routes are appropriate for vehicle

Consider route and network wide benefits

Use template conditions on notices and permits

Pro-active approach to managing access

Road Authorities

Road Managers

Third Party Entities

Road managers are declared in the application laws of each state or territory and include road authorities, local governments and usually some other road owners.

The road manager is responsible for deciding whether to consent to the use of restricted access vehicles on its roads and may, when consenting, require that travel conditions and road conditions be included in a mass or dimension authority.

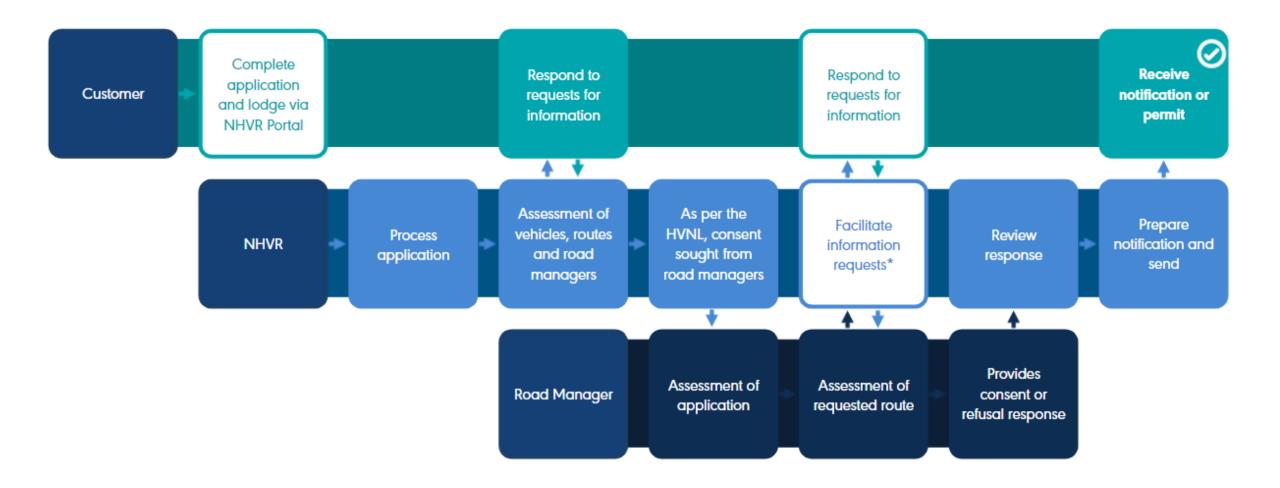
The HVNL gives the NHVR, road authorities and road managers a significant input into the access decision process for restricted access vehicles. With this power comes responsibility to ensure that such decisions are made according to the law, comply with procedural fairness principles, and with due consideration of the interests of not only

Guidance on Efficiency and Productivity

Subject to public safety and other relevant considerations, access should be granted to vehicles that can provide improvements to efficiency and productivity compared to existing arrangements. Considerations in this context can include, but are not limited to, vehicles that:

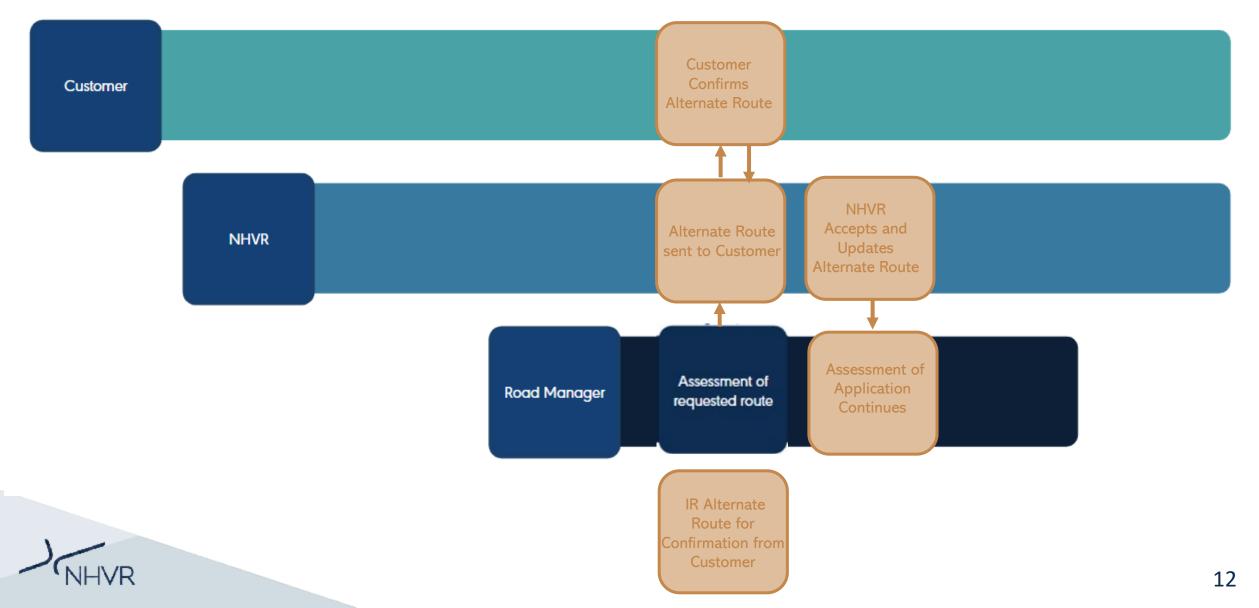
Reduce the number of overall trips for a freight task

Reduce crash risk


Reduce trip times for users on the network

Reduce emissions

with respect to infrastructure deterioration (i.e. pavements, bridges and other structures) i. reduce absolute or overall deterioration ii. reduce the rate of deterioration iii. 'consume' the asset at a more efficient rate for the freight being transported


Reduce traffic congestion on the network

Permit Workflow

Information Request - Alternate Route for Confirmation from Customer

Options for permit application decision-making

- 1. Granted without conditions
- 2. Granted with conditions
- 3. Refusal
 - with valid reasoning

SCENARIO - Alternate Route

NHVR PORTAL DEMONSTRATION

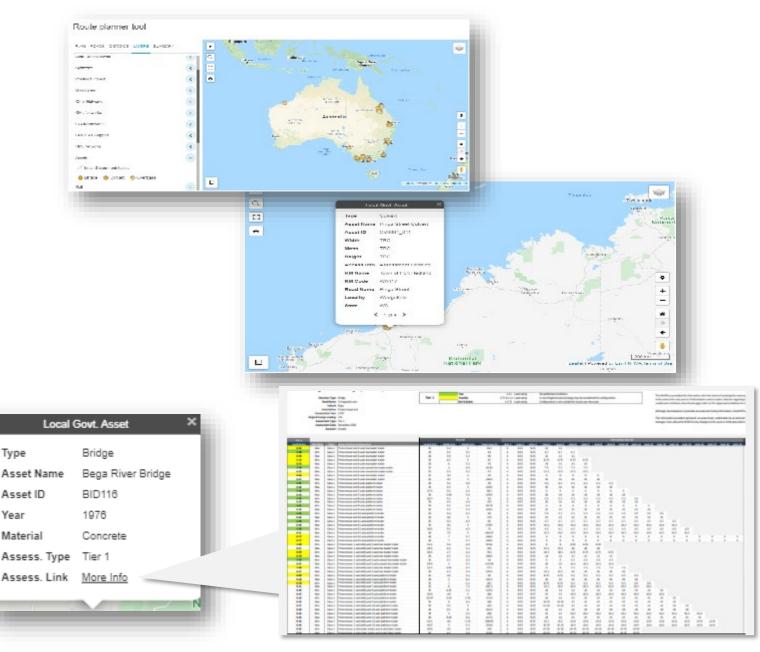
Approved Guidelines for Granting Access

eLearn available:

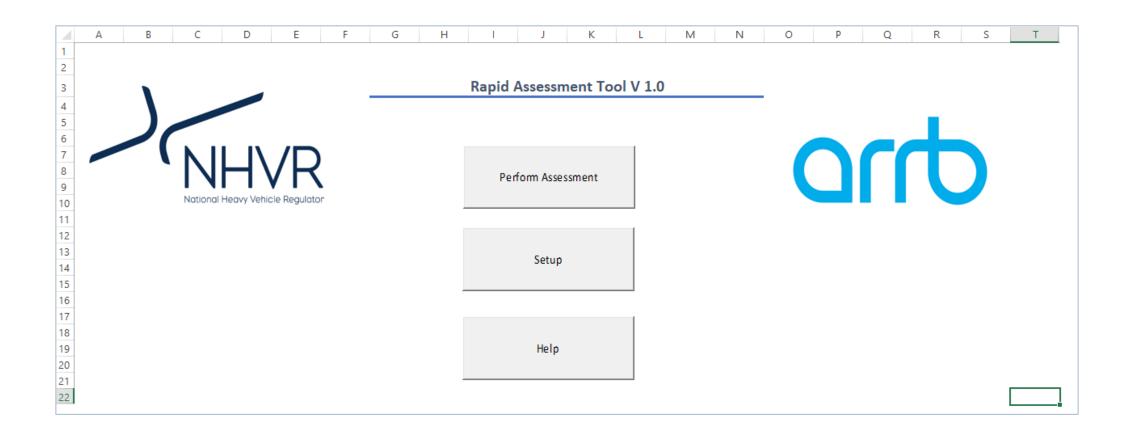
https://www.nhvr.gov.au/training/guidelines-for-granting-access/ Guidelines for Granting Access

NHVR Portal – future functionality Todd Wellard

NHVR Portal – Digital Access Management


Type

Year


Asset layer displays basic data and provides links to available asset assessments

- Publicly accessible information (via NHVR Portal Info Hub)
- Supports operators in selecting appropriate route for vehicles
- Provides asset report for more than 100 vehicle configurations

SLGAAP Rapid Assessment Tool (sneak peak)

Entering Bridge Configuration and Reference Vehicles

	В	с	D	Е	F	G	н	I	J	к	L	м	Ν	0	Р	Q	R	S T	U	V	W F.
1	_		_			_					_				-	-					
2																					
3																					
4	lumber of	Bridge Configur																			
	lumber of spans upport type		Span length 1 Span length 2		m	< <to assess<="" td=""><td>sment</td><td>Reference Load</td><td>Effects</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></to>	sment	Reference Load	Effects												
	rafficable		Span rengtin 2																		
7	ane width (m)		Span length 3		m																
8 9 10 11			Span length 4		m																
9			Span length 5		m																
10			Span length 6 Span length 7		m																
12			Span length 8		m																
13			Span length 9		m																
14			Span length 10		m																
15																					
12 13 14 15 16 17																					
18																					
19										Re	ference Vehi	icles									
20			In Lane							Str	addling Lanes						Custom				
					Include in													Include in			
21	ehicle 1 Name		Percentage (%)		analysis?			Vehicle 1 Name		Percentage (%)		Include in analysis?			Vehicle 1 Name		Percentage (%)	analysis?			
22	Axle	Loading	Distance from first axle	Loading	ШF			Axle	Loading	Distance from first axle	Loading	LLF			Axle	Loading	Distance from first axle	Loading			
23		Tonnes	m	kN	DLA				Tonnes	m	kN	DLA				Tonnes	m	kN DLA			
24	1				GCW (m)			1			0.0	GCW (m)			1			0.0 GCW (m)			
					Lane load UDL							Lane load UDL						Lane load UDL			
25	2			0.0	(kN/m)		Simply supported	2			0.0	(kN/m)		Simply supported	2			0.0 (kN/m)	s	Simply supporte	ed 🛛
26	3			0.0	Concentrated load M (kN)		Simply supported	3			0.0	Concentrated load M (kN)		Simply supported	3			Concentrated 0.0 load M (kN)		Simply supporte	be
20				0.0	Concentrated		Simply supported				0.0	Concentrated load V		Simply supported				Concentrated	ľ	simply supporte	.u
27	4			0.0	load V (kN)		Simply supported	4			0.0	(kN)		Simply supported	4			0.0 load V (kN)	1	Simply supporte	ed
					Consider lane													Consider lane			
					load together							Consider lane load						load together			
					with Vehicle Load (e.g.							together with Vehicle Load (e.g.						with Vehicle Load (e.g.			
28	5			0.0	SM1600)?			5			0.0	SM1600)?			5			0.0 SM1600)?			
29	6			0.0				6			0.0			_	6			0.0			
30	7			0.0	-			7			0.0	-			7			0.0			
31	8			0.0	-			8			0.0	-			8			0.0			
32 33	10			0.0	-			10			0.0	-			10		+	0.0			
34	10			0.0	1			10			0.0	1			10			0.0			
35	12			0.0]			12			0.0]			12			0.0			
36	13			0.0	_			13			0.0	_		[13			0.0			
37	14			0.0	1			14			0.0	-			14			0.0			[
	• F	RAT Applicati	on Vehicle	Results	Bridge Inp	No	otes 🕘							4							Þ
	20				47																
																C		anid Accorrect	ot Te cl	10	
	SLGAAP Rapid Assessment Tool 19																				

The National Spatial Program

NHVR's vision of "reliable & accessible geospatial intelligence that underpins our vision of a safe, efficient & productive heavy vehicle industry serving Australia's needs:

- Spatial Data Infrastructure: lay foundations of tech & data for organisational spatial capabilities
- **Operations**: building applications and tools that facilitate and improve operational efficiency
- Live: timely and transparent access to geospatial intelligence for the NHVR and stakeholders.

Road Ownership by Road Managers directly.

Intelligent Routing for Transport Industry

productivity for Heavy Vehicles

Road Managers will have the tools to update road ownership, road boundaries and create their own pre-approved and gazetted networks. Will reduce number of consents required.

State Road Maps to be consolidated into one holistic NHVR Heavy Vehicle network map with common national process to update and maintain routes. This will in turn reduce the no. of state road consents.

Industry able to plot intelligent routes that snap, if possible, to gazetted networks to minimise consent requests. Alternate route options e.g. quickest, most immediate routes or to use state roads where possible.

Giving better routing options improves the chance of building routes that do not require consents or reduces frequency. NHVR can process permits more quickly and can reduce impost on road managers.

NHVR Access Team

LGA Road Managers

LGA Road Managers

Transport Industry

SLGAAP - Stay connected

Road Manager TOOIkit

What is SLGAAP?

In the 2016, the Australian Sourcement provides the leaters Heavy Relice Regulator (HWR) with 17 28 million in funding to estationed managers with the execution of incontent infractular essents, the bridger and Calverts A leater universitivity of Press exect on review or you environment with a submit of the and the submit of the analysis of the submit of

The Diretopic Local Contervinent Asset Assessment Project (DLOAAP) was established as a national project to

Strategic Local Government Asset Assessment Project

Round 1 was planned based on the key isomings and expressives learned during the Files Press, Outparter of Round Transact Case provides - executing least even does up does The head sheady received none than 200 asset non-indices for Round 1 and with such a high layer of indices), the BUCHAP team is hearing to excure future project funding in since to complete at

Nominals an asset on the Interactive map The WHIR SUBAR learn is currently calling for the heavy vehicle inducity to provide theorem and get musiced by reprinting eases or local

Visit the SLGAAP Website to keep updated with

all of the project news and progress. https://nhvr.engagementhub.com.au E: roadassetproject@nhvr.gov.au

INT AT A

Questions?

Next Webinar Tuesday 27 July

Applying Conditions for Heavy Vehicle Access

Register for the rest of the Webinar series here: https://www.eventbrite.com.au/o/national-

heavy-vehicle-regulator-11836541834